Changes in water chemistry can disable plankton prey defenses.
نویسندگان
چکیده
The effectiveness of antipredator defenses is greatly influenced by the environment in which an organism lives. In aquatic ecosystems, the chemical composition of the water itself may play an important role in the outcome of predator-prey interactions by altering the ability of prey to detect predators or to implement defensive responses once the predator's presence is perceived. Here, we demonstrate that low calcium concentrations (<1.5 mg/L) that are found in many softwater lakes and ponds disable the ability of the water flea, Daphnia pulex to respond effectively to its predator, larvae of the phantom midge, Chaoborus americanus. This low-calcium environment prevents development of the prey's normal array of induced defenses, which include an increase in body size, formation of neck spines, and strengthening of the carapace. We estimate that this inability to access these otherwise effective defenses results in a 50-186% increase in the vulnerability of the smaller juvenile instars of Daphnia, the stages most susceptible to Chaoborus predation. Such a change likely contributes to the observed lack of success of daphniids in most low-calcium freshwater environments, and will speed the loss of these important zooplankton in lakes where calcium levels are in decline.
منابع مشابه
Evolution of inducible defenses
Predation is a major selective force structuring biological communities and causing the evolution of defenses in many prey organisms. While permanent defenses evolve under constant predation pressure, inducible defenses are adaptations to heterogeneity in predation risk [1] and likely evolved under divergent selection regimes. Costs for the production or maintenance of defenses are saved during...
متن کاملTurbulence-induced contact rates of plankton: the question of scale
Modelling encounter rates between planktonic predators and prey in turbulent waters requires an estimate of a spatial scale. One spatial scale proposed in the literature based on prey concentration is shown to be systematically inconsistent and its use is shown to imply that plankton sampllng methodology can bias encounter rate estimates in turbulent situations. We show that a scale based on th...
متن کاملPredator Effects on Dense Zooplankton Aggregations in the Coastal Ocean
The distribution of organisms in the ocean is highly heterogeneous, influencing both sampling and ecological structure. The complex spatial and temporal structure of predators and prey affect one another. Numerous studies in pelagic systems have investigated the effects of prey distribution on predator behavior and studies in benthic habitats have revealed the significant impacts predators can ...
متن کاملSeasonal plankton-fish interactions: light regime, prey phenology, and herring foraging.
When prey and predator are seasonal migrants, encounters depend on migration phenologies and environmental constraints on predation. Here we investigate the relative contribution of seasonality in irradiance and prey abundance in shaping the rapid seasonal body condition increase of a migrating predator searching visually for its prey: the Norwegian spring-spawning herring, Clupea harengus, fee...
متن کاملPrey detection in selective plankton feeding by the paddlefish: is the electric sense sufficient?
The long rostrum of the paddlefish Polyodon spathula supports an extensive array of ampullary electroreceptors and has been proposed to function as an antenna for detecting planktonic prey. Evidence in support of this hypothesis is presented in experiments that preclude the use of other sensory mechanisms for plankton detection. Paddlefish swimming in a recirculating observation chamber are sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 38 شماره
صفحات -
تاریخ انتشار 2012